

 EcgSoft®

Software Developer’s Guide to

EcgViewer

Innovative ECG Software
www.ecg-soft.com - e-mail: info@ecg-soft.com

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012 Page 2

This page is intentionally left blank

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 3

Contents

1. Introduction ...4

2. About the Guide ...4

3. EcgViewer Open Interface Block Diagram ...5

4. Creating an “OEMLib.dll” for binary ECG data format6

5. IEcgAccess Open Interface Version 1.2 ..12

6. How to call EcgViewer (Embeddable Version) from your application 17

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 4

1. Introduction

EcgViewer application provides you with a graphical interface to display, review, edit and print
ECG files in SCP-ECG format and also in other standard or non-standard proprietary formats.

“Open Interface Access” is the key to the universal usage of the EcgViewer with various
standard and non-standard ECG data formats.

Thanks to the “Open Interface Access” of the EcgViewer, proprietary ECG data can be viewed if
a suitable plug in DLL (Dynamically Linked Library) is available or created conforming to “Open
Interface Access”.

2. About the Guide

This guide will help you create a suitable DLL software for your proprietary ECG data with
minimal effort and time on your side. Depending on the complexity of the proprietary ECG
data format, software development time of a few hours to utmost a few days is sufficient for a
programmer familiar with his proprietary ECG data format.

At present, EcgViewer supports SCP-ECG, Binary, MIT-BIH Arrhythmia Data Base formats as well
as other proprietary formats of various ECG Manufacturers.

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 5

3. EcgViewer Open Interface Block Diagram

As illustrated in the diagram below, all data transfer to and from EcgViewer is realized over the
IEcgAccess Interface.

For each ECG data format to be supported, one Reader/Writer DLL of the name “OEMLib.dll”
needs to be created. The following example demonstrates the implementation of IEcgAccess
interface to create an “OEMLib.dll” DLL for reading and viewing a binary ECG file.

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 6

4. Creating an “OEMLib.dll” for binary ECG data format

Let us assume that we have a proprietary binary ECG file where pure raw ECG data is stored in
2 bytes signed integer format. Also assume that data storage format is declared in C# language
syntax as follows:

// first sample of 12 leads

short int I; // 2 bytes signed integer

short int II; // 2 bytes signed integer

short int III; // 2 bytes signed integer

short int aVR; // 2 bytes signed integer

short int aVL; // 2 bytes signed integer

short int aVF; // 2 bytes signed integer

short int V1; // 2 bytes signed integer

short int V2; // 2 bytes signed integer

short int V3; // 2 bytes signed integer

short int V4; // 2 bytes signed integer

short int V5; // 2 bytes signed integer

short int V6; // 2 bytes signed integer

// Second sample of 12 leads

short int I; // 2 bytes signed integer

short int II; // 2 bytes signed integer

short int III; // 2 bytes signed integer

short int aVR; // 2 bytes signed integer

short int aVL; // 2 bytes signed integer

short int aVF; // 2 bytes signed integer

short int V1; // 2 bytes signed integer

short int V2; // 2 bytes signed integer

short int V3; // 2 bytes signed integer

short int V4; // 2 bytes signed integer

short int V5; // 2 bytes signed integer

short int V6; // 2 bytes signed integer

// Nth sample 12 leads

.

.

.

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 7

This format is straightforward where each lead data for the particular sample is written
consecutively in 2 bytes signed integer format. And then next sample is stored similarly.

Note that there is no patient info, diagnostic info or ECG signal info (i.e. sampling rate, number
of leads, etc) stored in the binary file.

As illustrated in the following C# code pages , you need to implement these steps:

1. Create a new class library solution and name the solution as OemLib.

2. Let the OemEcg class implement the IEcgAccess interface as: public class
OemEcg : IEcgAccess

3. Implement the methods of IEcgAccess as related to your ECG data format

4. Compile the solution and copy the “OemLib.dll” into the application folder of EcgViewer
at “..\ProgramFiles\EcgSoft\EcgViewer”

5. Finally, select from Setupmenu, General->ECG Formats->Use OemLib.dll option so that
EcgViewer would use your implementation as default.

You may also download and modify this solution from www.ecg-soft.com web site. There is also
another solution available at the same site for reading MIT-BIH Database Arrhythmia recordings.

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 8

IEcgAccess interface comprises Patient Info, Diagnostic Info, ECG Signal Info and ECG data. Of

particular importance are the ECG SignalInfo structure and its members:

1. public string Leads

Define your lead names here. Do not put extra spaces or characters in between.
Example: Leads = "I,II,III,aVR,aVL,aVF,V1,V2,V3,V4,V5,V6";

2. public double SRATE

Sampling rate in samples per second

3. public double ADU

Number (Analog/Digital ConversionValue) corresponding to 1 mv ECG signal

 /// <summary>
 /// OemEcg Class example for read/write of 12 leads EC G data stored in a
 /// binary extension file (*.bin). IEcgAccess interfac e is implemented.
 /// Use this example to implement your own data format class as OemEcg.
 /// Then create OemLib.dll and copy it to the applicat ion folder of viewer.
 /// Next from Setupmenu, select General->ECG Formats-> Use OemLib.dll option
 /// so that viewer would use your implementation as de fault.
 /// </summary>
 /// <remarks>
 /// All 12 leads are assumed to be simultaneously rec orded. Each sample is
 /// 2 byte long samples are saved as:
 /// [Sample1:(I,I,II,aVR,aVL,aVF,V1,V2,V3,V4,V5,V6), S ample2:(..),
 /// Sample3:(..),....]
 /// Only pure ECG data is saved in this example
 /// </remarks>
 ///

 public class OemEcg : IEcgAccess
 {
 // string for file extension filtering in Open file dialog box
 // of the EcgViewer

 public static string fileFilter = "Binary-Ecg (*.bin)|*.bin" ;

 Person myPatient;
 SignalInfo myEcgInfo;
 ArrayList ecgDataList;
 Diagnostic myDiagnoseInfo;

 // Default constructor
 public OemEcg()
 {

 myPatient = new Person (); //create a new patient info structure
 myEcgInfo = new SignalInfo (); //create a new ecg info structure
 myDiagnoseInfo = new Diagnostic ();
 ecgDataList = new ArrayList ();

 // fill patient data with some dummy patient info. (i.e no patient
 // info is stored in the binary file)

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 9

 myPatient.ID = "Demo Patient" ;
 myPatient.FirstName = "John" ;
 myPatient.LastName = "Begg" ;
 myPatient.Height = 180;
 myPatient.Weight = 75;
 myPatient.WeightUnit = 0;
 myPatient.Sex = 1;

 // some dummy remarks
 myDiagnoseInfo.FreeText = " This is a demo record to represent a
 .bin type ecg record where 2 bytes x 12 channel Ecg data is stored
 without any patient info" ;

 // fill Ecg info
 myEcgInfo.Acq.Year = 1962;
 myEcgInfo.Acq.Month = 16;
 myEcgInfo.Acq.Day = 11;
 myEcgInfo.Acq.Hour = 13;
 myEcgInfo.Acq.Minute = 25;
 myEcgInfo.Acq.Second = 46;

 myEcgInfo.ADU = 5464.48; //number representing 1 mv of ECG signal
 myEcgInfo.SRATE = 1000; //sampling rate in samples per second
 myEcgInfo.DeviceSN = "Demo Device" ;
 myEcgInfo.Leads = "I,II,III,aVR,aVL,aVF,V1,V2,V3,V4,V5,V6" ;
 }

 /*----------- Implement IEcgAccess interface method s ----------------*/

 // gets or sets Patient Information as specified by IEcgAccess
 // interface and Person Structure
 public Person PatientInfo
 {
 get { return myPatient; }
 set { myPatient = value ; }
 }

 // gets or sets pyhsician remarks as specified by I EcgAccess interface
 public Diagnostic DiagnoseInfo
 {
 get { return myDiagnoseInfo; }
 set { myDiagnoseInfo = value ; }
 }

 // gets or sets Ecg related data as specified by IE cgAccess interface
 // and SignalInfo structure
 public SignalInfo EcgInfo
 {
 get { return myEcgInfo; }
 set { myEcgInfo = value ; }
 }

 // gets or sets Ecg data as specified by IEcgAccess interface
 public ArrayList EcgData
 {
 get { return ecgDataList; }
 set { ecgDataList = value ; }
 }

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 10

 /// <summary>
 /// read the entire ECG data of the given fileName
 /// </summary>
 /// <param name="fileName"> name of Binary (*.bin) file </param>
 /// <returns> true if successful </returns>
 ///
 public bool Read(string fileName)
 {
 // Open a file stream and a Binary Reader associate d with this
 // stream
 FileStream myStream = new FileStream (fileName, FileMode .Open,
 FileAccess .Read);
 BinaryReader myReader = new BinaryReader (myStream);

 // First clear the collection
 ecgDataList.Clear();
 short [] ecgArray;

 myStream.Position = 0;

 // each block is 12 channels by 2 bytes)
 long length = myStream.Length / (12 * 2);

 // Now read the ECG data
 for (int j = 0; j < length; j++)
 {
 ecgDataList.Add(new short [12]);
 ecgArray = (short [])ecgDataList[j];

 ecgArray[0] = myReader.ReadInt16();
 ecgArray[1] = myReader.ReadInt16();
 ecgArray[2] = myReader.ReadInt16();
 ecgArray[3] = myReader.ReadInt16();
 ecgArray[4] = myReader.ReadInt16();
 ecgArray[5] = myReader.ReadInt16();
 ecgArray[6] = myReader.ReadInt16();
 ecgArray[7] = myReader.ReadInt16();
 ecgArray[8] = myReader.ReadInt16();
 ecgArray[9] = myReader.ReadInt16();
 ecgArray[10] = myReader.ReadInt16() ;
 ecgArray[11] = myReader.ReadInt16() ;
 }

 // Close the file stream and associated binary read er
 myReader.Close();
 myStream.Close();
 return true ;
 }

 /// <summary> write the entire Ecg data into the binary file wit h
 specified file name </summary>
 /// <param name="fileName"> name of Binary (*.bin) file </param>
 /// <returns> true if successful </returns>
 ///
 public bool Write(string fileName)
 {
 // Open a file stream and a Binary Reader associate d with this
 // stream

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 11

 FileStream myStream = new FileStream (fileName, FileMode .Create);
 BinaryWriter myWriter = new BinaryWriter (myStream);

 // Write the 12 channel raw ECG data
 short [] ecgArray;
 for (int i = 0; i < ecgDataList.Count; i++)
 {
 ecgArray = (short [])ecgDataList[i];
 for (int j = 0; j < ecgArray.Length; j++)
 myWriter.Write(ecgArray[j]);
 }

 // Close the file stream and associated binary writ er
 myWriter.Close();
 myStream.Close();
 return true ;
 }

 }

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 12

5. IEcgAccess Open Interface Version 1.2

Implementing the open interface enables a proprietary or standard based ECG data to be
viewed by the EcgViewer. Below is the C# code for the open interface IEcgAccess:

 /// <summary>

/// IEcgAccess Interface to implement read/write API
/// </summary>
public interface IEcgAccess
{
 /// <summary>
 /// Reads entire record at the given path and returns true if
 /// successfull
 /// </summary>
 bool Read(string fileName);

 /// <summary>
 /// Writes entire record to the given path and returns true if
 /// successfull
 /// </summary>
 bool Write(string fileName);

 /// <summary>
 /// Patient related info is grouped here
 /// </summary>
 Person PatientInfo
 {
 get ;
 set ;
 }

 /// <summary>
 /// ECG related info, excluding ecg data, is grouped h ere
 /// </summary>
 SignalInfo EcgInfo
 {
 get ;
 set ;
 }

 /// <summary>
 /// Diagnose related info is grouped here
 /// </summary>
 Diagnostic DiagnoseInfo
 {
 get ;
 set ;
 }

 /// <summary> gets or sets ECG data as specified by IEcgAccess
 /// interface
 /// </summary>
 ArrayList EcgData
 {
 get ;
 set ;
 }

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 13

}

 /// <summary>
 /// Simple DateTime structure
 /// </summary>
 public struct DateAndTime
 {
 public int Year;
 public int Month;
 public int Day;
 public int Hour;
 public int Minute;
 public int Second;
 }

 /// <summary>
 /// Personal Details of the patient.
 /// </summary>
 public struct Person
 {
 /// <summary>Patient Identification Number, reasonable length
 /// 40 characters
 /// </summary>
 public string ID;

 /// <summary>First Name </summary>
 public string FirstName;

 /// <summary>Second Last Name </summary>
 public string SecondLastName;

 /// <summary>Last Name </summary>
 public string LastName;

 /// <summary>
 /// 0.Not known 1.Male, 2.Female, 9.Unspecified
 /// </summary>
 public int Sex;

 /// <summary>
 /// 0.Unspecified, 1.Caucasian, 2.Black, 3.Ori ental
 /// </summary>
 public byte Race;

 /// <summary> Weight in specified units </summary>
 public int Weight;

 /// <summary>
 /// 0.Unspecified, 1.Kilogram, 2.Gram, 3.Pound, 4.Ounc e
 /// </summary>
 public byte WeightUnit;
 /// <summary> Height in specified units </summary>
 public int Height;

 /// <summary>
 /// 0.Unspecified, 1.Centimeters, 2.Inches, 3.Millimet ers
 /// </summary>
 public byte HeightUnit;

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 14

 /// <summary>
 /// Date of birth specified in DateAndTime str ucture
 /// </summary>
 public DateAndTime Birth;

 /// <summary> Age in years </summary>
 public int Age;
 }

 /// <summary>
 /// Details related to ECG signal characteristics and data
 /// acquisition
 /// </summary>

 public struct SignalInfo
 {
 /// <summary>
 /// Enter Lead names EXACTLY as decribed in Lead
 /// Identification Codes table.
 /// Do not put extra spaces or characters in between.
 /// Example: "I,II,III,aVR,aVL,aVF,V1,V2,V3,V4,V5,V6"
 /// </summary>
 public string Leads;

 /// <summary>
 /// If all lead recording lengths are not same, create and
 /// set this array to specify lead lengths i n samples.
 /// If same, no need to use this field.
 /// </summary>
 public uint [] LeadLengths;

 /// <summary>
 /// A/D value corresponding to 1 mv at the input
 /// </summary>
 public double ADU;

 /// <summary> Sampling rate in samples per second </summary>
 public double SRATE;

 /// <summary> Date and Time of Acquisition in DateAndTime
 /// structure
 /// </summary>
 public DateAndTime Acq;

 /// <summary>
 /// "cut-off" frequency (-3 db) of the high pa ss baseline
 /// filter in Hz
 /// </summary>
 public double BaseLineFilter

 /// <summary>
 /// "cut-off" frequency (-3db) of the low pass filter in Hz
 /// </summary>
 public double LowPassFilter;

 /// <summary>

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 15

 /// if other filters, which were not defined above, in dicated
 /// here.
 /// Bit 0:60 Hertz notch filter, Bit 1:50 Hertz notch filter
 /// Bit 2:Artifact filter Bit 3:Baseline filter (e.g.
 /// adaptive filter or spline filter)
 /// </summary>
 public byte FilterBitMap;

 /// <summary>
 / // Text model description. Up to 5 bytes of text
 /// </summary>
 public string TextModel;

 /// <summary>
 /// Language Support Code (one byte). This bit map ind icates

 /// the supported character sets.
 /// Refer to SCP-ECG standart for the explanation of c odes
 /// </summary>
 public byte LanguageCode;

 /// <summary>
 /// Capabilities of the ECG Device (one byte bit map).
 /// Bit 0-3 reserved, 4 printing, 5 analysis, 6 storag e, 7
 /// acquisition
 /// </summary>
 public byte CapabilitiesBitMap;

 /// <summary>
 /// Specifies frequency of the AC Mains
 /// 0: unspecified, 1: 50Hz, 2: 60Hz
 /// </summary>
 public byte ACMainsFrequency;

 /// <summary> Serial Number of Acquisition Device </summary>
 public string DeviceSN;

 /// <summary> Acquisition device SCP implementation software
 /// identifier (maximum 24 characters) </summary>
 public string DeviceSCP;

 /// <summary> Manufacturer of Acquisition Device </summary>
 public string DeviceMF;

}

 /// <summary>
 /// Details related to Diagnosis and Medical history
 /// </summary>

 public struct Diagnostic
 {
 /// <summary> Systolic blood pressure in mmHg </summary>
 public ushort Systolic;

 /// <summary> Diastolic blood pressure in mmHg </summary>
 public ushort Diastolic;

 /// <summary> Acquiring Institution Description </summary>

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 16

 public string AcquiringInstitute;

 /// <summary> Referring Physician </summary>
 public string ReferringPhysician;

 /// <summary> Diagnosis or the referral indication </summary>
 public string Diagnosis;

 /// <summary> Medical History </summary>
 public string MedicalHistory;

 /// <summary> Remarks and free text </summary>
 public string FreeText;

}

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 17

6. How to call EcgViewer (Embeddable Version) from your application

In some applications, it may be desirable to automatically launch the EcgViewer and view a
specific ECG file without user interruption.

 For example, you may have an ECG database application where you may need to view an ECG
file by running the EcgViewer within your application.

Embeddable version of EcgViewer lets you input an ECG file name as a command line parameter
and run it in the syntax: “ EcgViewer.exe FileName ”

Software Developer’s Guide to EcgViewer

Copyright © EcgSoft, October 2012
 Page 18

Following C# example illustrates this by using System.Diagnostics name space of .Net
Framework:

using System.Diagnostics;
.
.

// ECG file to be viewed (just an example)
string fullFilePath = "C:\\myECGDataFolder\\mySampleEcg.scp" ;

// Keep the string intact including spaces, otherwi se each space results in
// creation of a new argument
fullFilePath = string .Format("\"{0}\"" , fullFilePath);

// path of the ProgramFiles folder
string pathProgramFiles = Environment .GetFolderPath(
 Environment . SpecialFolder .ProgramFiles);
// path of the EcgViewer.exe application
string exePath = pathProgramFiles + "\\EcgSoft\\EcgViewer" ;

Process p = new Process ();
p.StartInfo.UseShellExecute = false ;
p.StartInfo.FileName = exePath + "\\EcgViewer.exe" ;
p.StartInfo.CreateNoWindow = true ; // do not display ms-dos window
p.StartInfo.Arguments = fullFilePath // ECG file to be viewed
p.EnableRaisingEvents = false ;

// warn user if EcgViewer editor does not exist or can not be run
try
{
 p.Start();
 p.WaitForExit(); // wait until EcgViewer is closed
}
catch
{
 MessageBox .Show("Can not run EcgViewer !”);
}

